请选择
不是任何实数都有算数平方根,算术平方根只有大于或等于0的数才有。而实数包括正实数和负实数,负实数是没有平方根的。实数在数学上是指定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。
算术平方根和平方根区别
1、定义不同:
⑴绝大部分地,如果一个非负数x的平方等于a,即X²=a,那么这个非负数x叫做a的算术平方根(arithmetic square root)。
⑵一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root)。这就是说,如果,那么x叫做a的平方根。
2、表示方法不同:
⑴a的算术平方根记为√a,读作“根号a”,a叫做被开方数(radicand)。
⑵a的平方根记为±√a,读作“正负根号a”,其中a叫做被开方数。
3、个数不同:从形式上看,二者的符号主体相似,但是一个数的平方根要在其算术平方根的前面写上“±”。这也正好说明了一个正数和零的算术平方根有且只有一个,而一个正数却有两个互为相反数的平方根。零只有一个平方根。