请选择
在n趋于无穷大的时候,(1+1/n)^n就趋于一个无理数,而且这个数在初等数学中是没有出现的,就将其定义为e,而e约等于2.71828,是一个无限不循环小数,为超越数。
极限的性质
1、唯一性:若数列的极限存在,则极限值是唯一的,且它的任何子列的极限与原数列的相等。
2、有界性:如果一个数列’收敛‘(有极限),那么这个数列一定有界。
但是,如果一个数列有界,这个数列未必收敛。例如数列:“1,-1,1,-1,……,(-1)n+1”
3、保不等式性:设数列{xn}与{yn}均收敛。若存在正数N,使得当n>N时有xn≥yn,则(若条件换为xn>yn,结论不变)。