请选择
一般情况下,n边形一共有n×(n-3)÷2条对角线,n应该满足大于3的条件,否则公式则无意义,因为n小于3时不能构成多边形,在三角形中,n=3,那么n-3=0,所以三角形没有对角线。对角线,几何学名词,定义为连接多边形任意两个不相邻顶点的线段。
n边形有n(n-3)条对角线,对角线为连接多边形任意两个不相邻顶点的线段,或者连接多面体任意两个不在同一面上的顶点的线段。另外在代数学中,n阶行列式,从左上至右下的数归为主对角线,从左下至右上的数归为副对角线。
对角线,几何学名词,定义为连接多边形任意两个不相邻顶点的线段,或者连接多面体任意两个不在同一面上的顶点的线段。另外在代数学中,n阶行列式,从左上至右下的数归为主对角线,从左下至右上的数归为副对角线。“对角线”一词来源于古希腊语“角”与“角”之间的关系。
对角线的性质如下:
1、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
2、正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形。
四条边都相等、四个角都是直角的四边形是正方形。
正方形的两组对边分别平行,四条边都相等;四个角都是90°;对角线互相垂直、平分且相等,每条对角线都平分一组对角。